SET - 1

GR 14

I B. Tech I Semester Regular Examinations, January, 2015 Mathematics for Biotechnology-I

(Biotechnology)

Time: 3 hours

Max Marks: 70

PART – A Answer ALL questions All questions carry equal marks *****

2 * 10 = 20 Marks

[2]

1). a Evaluate
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at $x = \frac{\pi}{4}$ for the function $y = 2\sin 2x + 5\cos 2x$ [2]

b If
$$u = x^2 + 2xy + 2y^2$$
, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ in terms of u [2]

c If
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, show that $A A^{T}$ is symmetric.

d What does the Cayley Hamilton theorem confirm for the matrix $A = \begin{pmatrix} 5 & 2 \\ -2 & 6 \end{pmatrix}$? [2] Express mathematically.

e Evaluate the definite integral
$$\int_{0}^{1} x e^{-x^{2}} dx$$
 [2]

f
Find the rank of the matrix
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 5 & 0 \end{pmatrix}$$
 [2]

g Find the eigenvalues of the matrix
$$AA^T$$
 given the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 8 \end{pmatrix}$ [2]

Form the differential equation of the family of curves $y = ax + \frac{b}{x}$	[2]
	Form the differential equation of the family of curves $y = ax + \frac{b}{x}$

- i Solve the homogeneous differential equation y'' + 4y' 5y = 0 [2]
- **j** Find the particular integral of the differential equation $y'' + y' + 2y = \sin 3x$ [2]

SET - 1

GR 14

PART – B Answer any FIVE questions All questions carry equal marks *****

5 * 10 = 50 Marks

2. (a) Evaluate
$$\frac{y''}{\left[1+(y')^2\right]^{3/2}}$$
 at x = 0 for the parabola $y = x^2$ [5]
(b) Evaluate $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$ [5]

3. (a) Investigate the consistency of the linear algebraic system given below and solve [10] if possible 2x + y - z = 0, 2x + 5y + 7z = 52, x + y + z = 9 [5]

	(1	-2	1)	
(b) Verify Cayley Hamilton theorem for the matrix $A =$	1	1	-2	[5]
	$\left(-2\right)$	1	1)	

- 4. Reduce the quadratic form $Q(X) = 3x_1^2 + 5x_2^2 + 3x_3^2 2x_2x_3 + 2x_1x_3 2x_1x_2$ using [10] an orthogonal transformation. Specify the transformation.
- 5. (a) Solve the first order differential equation $y' + y \cot x = 2x \csc x$ [5] [10]
 - (b) Find the orthogonal trajectories of the family of parabolas $y = ax^2$ [5]
- 6. (a) Solve the linear differential equation $y'' + y' 12y = \cos 3x + e^{2x}$ [6] [10] (b) Solve the Cauchy's equation $x^2y'' + 4xy' + 2y = 2x^2$ [4]
- 7. (a) Evaluate the definite integral $\int_{0}^{2} \frac{x+1}{x^{2}+4} dx$ [4]

(b) Find the rank, index and signature of the quadratic form [6] $3x_1^2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 + 2x_1x_3 - 2x_1x_2$

8. (a) Find the area bounded by the curves $y = \sin x$ and $y = \cos x$ between any two [10] consecutive points of intersection. [6]

(b) Evaluate
$$u_{xx} + u_{yy}$$
 for the function $u = \frac{1}{2} \ln(x^2 + y^2)$ [4]
